You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

A discussion of fundamental mathematical principles from algebra to elementary calculus designed to promote constructive mathematical reasoning.

The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

Provides an in-depth analysis of the cognitive science of mathematical ideas that argues that conceptual metaphor plays a definitive role in mathematical ideas, exploring such concepts as arithmetic, algebra, sets, logic, and infinity. Reprint. 20,000 first printing.

Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.

Mathematics education research has blossomed into many different areas, which we can see in the programmes of the ICME conferences, as well as in the various survey articles in the Handbooks. However, all of these lines of research are trying to grapple with the complexity of the same process of learning mathematics. Although our knowledge of the process is through fragmentation of research more extensive and deeper there is a need to overcome this fragmentation and to see learning as one process with different aspects. To overcome this fragmentation, this book identifies six themes: (1) mathematics, culture and society, (2) the structure of mathematics and its influence on the learning process, (3) mathematics learning as a cognitive process, (4) mathematics learning as a social process, (5) affective conditions of the mathematics learning process, (6) new technologies and mathematics learning. This book is addressed to all researchers in mathematic education. It gives an orientation and overview on what is going on and what are the main results and questions what are important books or papers if further information is needed.

Authors analyze mathematics education from a range of perspectives. They address such practical problems as: maximizing the impact of teacher education programmes; increasing learning opportunities for students working in groups; and the impact of male domination in mixed classrooms.

Originally published in 1893, this book was significantly revised and extended by the author (second edition, 1919) to cover the history of mathematics from antiquity to the end of World War I. Since then, three more editions were published, and the current volume is a reproduction of the fifth edition (1991). The book covers the history of ancient mathematics (Babylonian, Egyptian, Roman, Chinese, Japanese, Mayan, Hindu, and Arabic, with a major emphasis on ancient Greek mathematics). The chapters that follow explore European mathematics in the Middle Ages and the mathematics of the sixteenth, seventeenth, and eighteenth centuries (Vieta, Decartes, Newton, Euler, and Lagrange). The last and...

This time-honored study by one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics surveys the role of mathematics in civilization. It describes clearly the main principles, methods, and theories of mathematics that have survived from 4000 B.C. to 1945. 1945 edition.