You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM.

What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations. The book moves on to explain complex topics t...

This volume presents the proceedings of the conference on "Trends in Mathematical Physics" held at the University of Tennessee. The conference drew international experts from mathematical and computational physics. The following topics were addressed: superstrings and quantum gravity, pattern formation, and crystallographic topology. The cutting-edge research reflected in the extensive surveys in the book are written for a diverse audience.

Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.

This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.

This monograph addresses, in a systematic and pedagogical manner, the mathematical methods and the algorithms required to deal with the molecularly based problems of bioinformatics. Prominent attention is given to pair-wise and multiple sequence alignment algorithms, stochastic models of mutations, modulus structure theory and protein configuration analysis. Strong links to the molecular structures of proteins, DNA and other biomolecules and their analyses are developed.

Computer science and physics have been closely linked since the birth of modern computing. In recent years, an interdisciplinary area has blossomed at the junction of these fields, connecting insights from statistical physics with basic computational challenges. Researchers have successfully applied techniques from the study of phase transitions to analyze NP-complete problems such as satisfiability and graph coloring. This is leading to a new understanding of the structure of these problems, and of how algorithms perform on them. Computational Complexity and Statistical Physics will serve as a standard reference and pedagogical aid to statistical physics methods in computer science, with a particular focus on phase transitions in combinatorial problems. Addressed to a broad range of readers, the book includes substantial background material along with current research by leading computer scientists, mathematicians, and physicists. It will prepare students and researchers from all of these fields to contribute to this exciting area.

This updated edition of Volumes 3 and 4 of Walter Thirring's famous textbook on mathematical physics is devoted to quantum mechanics and quantum statistical mechanics. Mathematics is shown to explain the axioms in depth and provide the right tool for testing numerical data in experiments.

Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-conta...

Reader-friendly guide offers illustrative examples of the rules of physical science and how they were formulated. Topics include the role of mathematics as the language of physics; nature of mechanical vibrations; harmonic motion and shapes; geometry of the laws of motion; more. 60 figures. 1963 edition.